Secret Site Map
Wednesday, November 26, 2014

Home News UCR Studies Birth Control for Mosquitoes

UCR Studies Birth Control for Mosquitoes

Public Health

A research team at the University of California, Riverside, has received a five-year $2.8 million grant from the National Institutes of Health to study the molecular basis of hormonal regulation of mosquito reproduction.

| March 27, 2012

RIVERSIDE, Calif. — Female mosquitoes require energy for their egg development, which they acquire from vertebrate blood.  But by sucking on blood, they become vectors of numerous disease pathogens of human and domestic animals. If the mechanisms that govern their egg production are better understood, novel approaches to controlling the reproduction and population of mosquitoes can be devised.

Now a research team led by Alexander Raikhel, a distinguished professor of entomology at the University of California, Riverside, has received a five-year $2.8 million grant from the National Institutes of Health to study the molecular basis of hormonal regulation of mosquito reproduction.

The researchers will focus on deciphering the genes involved in mediating the action of hormones involved during egg production in mosquitoes — specifically, Aedes aegypti, the mosquito that spreads dengue and yellow fever.
“What we are setting out to do is introduce birth control, based on hormones, in mosquitoes,” said Raikhel, an expert in the molecular biology of mosquitoes and a member of the National Academy of Sciences.  “Our task is to find a way to interrupt the host-seeking behavior of mosquitoes by manipulating their hormones and thus interrupting their egg development.  With egg development halted, the population of mosquitoes would eventually collapse.”

Nearly 2.5 billion people are at risk for contracting dengue fever.  Each year, there are 100 million cases of dengue in the world.  Yellow fever results in 30,000 deaths per year; about 200,000 cases are reported each year.

Raikhel explained that a hormone unique to insects, called the “juvenile hormone,” plays a key role in transforming a young female adult to a mature one that is capable of blood feeding, egg development, and thus spreading pathogens.  The absence of this hormone in the body of the female mosquito impedes the growth of the mosquito to the adult stage.  For the mosquito to reach the adult stage, levels of this hormone must first rise and then drop.
“This hormone is crucial for egg development,” Raikhel said.  “If we can figure out how its levels can be manipulated so that egg development is prevented, we can reduce the number of mosquitoes.”

Each mosquito cell has a receptor for the juvenile hormone. The exact nature of this receptor, however, has eluded researchers for many years.

“In this project, we plan also to understand the structure and function of this receptor,” Raikhel said.  “One reason this receptor has been very difficult to study is that, unlike other receptors like it, it does not lie on the surface of the cell.  Instead it lies inside the cell.”

Raikhel’s lab will attempt to block the action of the juvenile hormone’s receptors.
“Several levels of interception can be designed in the lab so that no egg development in mosquitoes results,” he said.

While his lab will focus in this project on only Aedes aegypti, the methods developed can be applied also to other disease-spreading mosquitoes.

Raikhel is recognized internationally for his significant contributions to insect science and vector biology. A leader in insect and mosquito reproduction and immunity, he is the author or coauthor of more than 160 research papers in international peer-reviewed scientific journals and books.

His research team includes the following researchers at UC Riverside: Tusar Saha, Zhen Zou, and Sang Woon Shin, all of whom work in Raikhel’s lab; and Thomas Girke, an associate professor of bioinformatics.

 

Top news

Bed Bugs Can Transmit Parasite that Causes Chagas Disease

A new study from Penn Medicine researchers in the Center for Clinical Epidemiology and Biostatistics demonstrated that bed bugs, like the triatomines, can transmit Trypanosoma cruzi, the parasite that causes Chagas disease.

NPMA Announces Opening for Director of Regulatory Affairs Position

The National Pest Management Association (NPMA) is seeking a qualified regulatory affairs professional to direct the day-to-day management and execution of NPMA’s federal and state regulatory affairs programs

New Liphatech Technical Bulletin Details Rodent Control in Schools

The company’s latest Technical Bulletin provides an in-depth description of variables to consider when developing integrated pest management (IPM) programs in school settings.

Ehrlich Selected to Protect National Landmarks

The company has been selected by the National Park Service to install and maintain effective termite control systems for 14 national historic sites in the Delaware Valley, including Independence Hall.

PCO Caldwell in Country Gospel Music Video

Ronnie Caldwell, president of Innovative Pest Management, Denver, N.C., is one of the stars of the new Bruce Hedrick video 'A Better Man.'

x