Secret Site Map
Tuesday, July 07, 2015

Home News Researchers Collect 'Signals Intelligence' on Insect Pests

Researchers Collect 'Signals Intelligence' on Insect Pests

National News

Using commercially available parts, U.S. Department of Agriculture (USDA) scientists and colleagues have developed a new automated system for detecting insects based on the peculiar sounds the insects make while moving.

| March 23, 2011

Using commercially available parts, U.S. Department of Agriculture (USDA) scientists and colleagues have developed a new automated system for detecting insects based on the peculiar sounds the insects make while moving.
According to entomologist Richard Mankin of USDA's Agricultural Research Service (ARS), one likely application will be to automate routine monitoring of industrial-scale traps, especially those placed in hard-to-reach areas like crawl spaces or near food processing equipment.

Automated insect monitoring could also be useful in situations where frequent checking of traps is impractical, adds Mankin, with the ARS Insect Behavior and Biocontrol Research Unit in Gainesville, Fla. ARS is USDA's principal intramural scientific research agency, and the research supports the USDA priority of promoting international food security.

Mankin developed the device in collaboration with North Carolina State University researchers Ryan Hodges, Troy Nagel and Coby Schal, all in Raleigh, and Roberto Pereira and Philip Koehler, both at the University of Florida in Gainesville. The team's objective was to make automated insect monitoring affordable, easy to use and reliable.

Toward that end, they integrated commercially available sensors (LEDs, microphones and piezoelectric film) with high-gain amplifiers and laptop-run software for analyzing signals. The system uses the sensors to collect infrared, acoustic and vibration signals generated by three kinds of insect movements: wriggling, crawling and scraping. The software analyzes the signals to create a profile of the target insect that distinguishes it from other species.

The researchers tested the device on three stored-product pests (rice weevil, red flour beetle and drugstore beetle) and two household pests (German cockroach and bed bug). In tests, individuals of each pest species were placed in small arenas where their signals could be collected and analyzed for differences in profile, amplitude and duration.
All species tested generated all signal types, but red flour beetles mostly wriggled, German cockroaches typically ran or crawled, and bed bugs mostly scraped.

Mankin envisions users placing the devices in traps or near infested structures and monitoring them remotely.
Read more about the research in the March 2011 issue of Agricultural Research magazine.
 

Top news

EPA Proposes to Cancel Some Uses of Propoxur

The U.S. Environmental Protection Agency (EPA) is proposing to cancel certain uses of the propoxur after preliminary human health assessment found risks from certain applications, EPA announced Wednesday.

Dow AgroSciences Names Hanson Product Manager

Mike Hanson has been named product manager for the ActiveSense Remote Monitoring System under development by Dow AgroSciences.

Arrow Exterminators Acquires Hallman Pest Control

Atlanta-based Arrow Exterminators announced the acquisition of Hallman Pest Control of Oneonta, Ala. This strategic location will provide Arrow the opportunity to expand its footprint in the growing Alabama market.

Marathon Data Systems Rebrands as WorkWave

The company also announced the acquisition of Foxtrax GPS, a cloud-based leader in fleet tracking technology.

Dr. Jacqueline Applegate to head Bayer Environmental Science

During her 23-year-career at Bayer, Applegate has held several management positions with Environmental Science, most notably president of its North America business from 2010 to 2012.

x